Modifications
On 3 juin 2025 à 15:50:09 TU,

-
Changed title to Near Surface Soil Moisture and Temperature data - TOMST (previously Near Surface Soil Moisture and Temperature data)
-
Removed maintainer from Near Surface Soil Moisture and Temperature data - TOMST
-
Removed maintainer email from Near Surface Soil Moisture and Temperature data - TOMST
-
Removed author from Near Surface Soil Moisture and Temperature data - TOMST
-
Removed author email from Near Surface Soil Moisture and Temperature data - TOMST
-
Changed the license of Near Surface Soil Moisture and Temperature data - TOMST to Creative Commons Attribution Share-Alike (previously None)
-
Removed the version from Near Surface Soil Moisture and Temperature data - TOMST
-
Changed value of field
modified
to2025-06-03
in Near Surface Soil Moisture and Temperature data - TOMST -
Changed value of field
created
to2025-06-03
in Near Surface Soil Moisture and Temperature data - TOMST -
Changed value of field
version_notes
to{'en': '', 'es': '', 'fr': ''}
in Near Surface Soil Moisture and Temperature data - TOMST -
Changed value of field
purpose
to{'en': '', 'es': '', 'fr': ''}
in Near Surface Soil Moisture and Temperature data - TOMST -
Changed value of field
provenance
to{'en': '', 'es': '', 'fr': ''}
in Near Surface Soil Moisture and Temperature data - TOMST -
Changed value of field
title_translated
to{'en': 'Near Surface Soil Moisture and Temperature data - TOMST', 'es': 'Datos de humedad y temperatura del suelo cerca de la superficie.', 'fr': "Données sur l'humidité et la température du sol près de la surface"}
in Near Surface Soil Moisture and Temperature data - TOMST -
Added field
contact_url
with valuehttps://hydr.vub.be/people/Katoria.Lesaalon.Lekarkar
to Near Surface Soil Moisture and Temperature data - TOMST -
Changed value of field
modified
of resource Soil moisture and temperature dataset: TOMST sensors to2025-06-03
(previously2024-12-09
) in Near Surface Soil Moisture and Temperature data - TOMST
f | 1 | { | f | 1 | { |
n | n | 2 | "access_rights": "", | ||
3 | "alternate_identifier": "", | ||||
4 | "author": "", | ||||
5 | "author_email": "", | ||||
6 | "author_uri": "", | ||||
7 | "conforms_to": [], | ||||
2 | "contact_email": "katoria.lesaalon.lekarkar@vub.be", | 8 | "contact_email": "katoria.lesaalon.lekarkar@vub.be", | ||
3 | "contact_name": "Katoria Lesaalon Lekarkar", | 9 | "contact_name": "Katoria Lesaalon Lekarkar", | ||
4 | "contact_uri": "", | 10 | "contact_uri": "", | ||
n | 5 | "contact_url": | n | ||
6 | "https://hydr.vub.be/people/Katoria.Lesaalon.Lekarkar", | ||||
7 | "created": "2024-12-09", | 11 | "created": "2025-06-03", | ||
8 | "creator_user_id": "176c850e-9a31-4521-b340-eb6ca3d64ed4", | 12 | "creator_user_id": "176c850e-9a31-4521-b340-eb6ca3d64ed4", | ||
n | n | 13 | "custom_citation": "", | ||
14 | "custom_doi": "", | ||||
9 | "dataset_scope": "spatial_dataset", | 15 | "dataset_scope": "spatial_dataset", | ||
10 | "dcat_type": | 16 | "dcat_type": | ||
11 | "http://inspire.ec.europa.eu/metadata-codelist/ResourceType/dataset", | 17 | "http://inspire.ec.europa.eu/metadata-codelist/ResourceType/dataset", | ||
n | n | 18 | "doi": "10.63253/ino64rch", | ||
19 | "doi_date_published": "2025-06-03", | ||||
20 | "doi_publisher": "UNESCO IHP-WINS", | ||||
21 | "doi_status": true, | ||||
22 | "domain": "https://ihp-wins.unesco.org", | ||||
23 | "extras": [ | ||||
24 | { | ||||
25 | "key": "contact_url", | ||||
26 | "value": "https://hydr.vub.be/people/Katoria.Lesaalon.Lekarkar" | ||||
27 | } | ||||
28 | ], | ||||
29 | "form_mode": "basic", | ||||
30 | "frequency": "", | ||||
12 | "graphic_overview": "", | 31 | "graphic_overview": "", | ||
13 | "groups": [], | 32 | "groups": [], | ||
n | n | 33 | "groups__0__id": "", | ||
34 | "groups__1__id": "", | ||||
14 | "hvd_category": "http://data.europa.eu/bna/c_dd313021", | 35 | "hvd_category": "http://data.europa.eu/bna/c_dd313021", | ||
15 | "id": "76e1672f-73e9-4850-872e-b0739698cf85", | 36 | "id": "76e1672f-73e9-4850-872e-b0739698cf85", | ||
16 | "identifier": "TOMST-Soil-Moisture", | 37 | "identifier": "TOMST-Soil-Moisture", | ||
n | 17 | "isopen": false, | n | 38 | "isopen": true, |
18 | "language": | 39 | "language": | ||
19 | "http://publications.europa.eu/resource/authority/language/ENG", | 40 | "http://publications.europa.eu/resource/authority/language/ENG", | ||
n | 20 | "license_title": null, | n | 41 | "license_id": "cc-by-sa", |
42 | "license_title": "Creative Commons Attribution Share-Alike", | ||||
43 | "license_url": "http://www.opendefinition.org/licenses/cc-by-sa", | ||||
44 | "lineage_process_steps": [], | ||||
45 | "lineage_source": [], | ||||
46 | "maintainer": "", | ||||
47 | "maintainer_email": "", | ||||
48 | "maintainer_uri": "", | ||||
49 | "maintainer_url": "", | ||||
21 | "metadata_created": "2024-10-21T12:31:47.881136", | 50 | "metadata_created": "2024-10-21T12:31:47.881136", | ||
n | 22 | "metadata_modified": "2024-12-09T13:32:25.887308", | n | 51 | "metadata_modified": "2025-06-03T15:50:05.315542", |
52 | "metadata_profile": [], | ||||
23 | "modified": "2024-12-09", | 53 | "modified": "2025-06-03", | ||
24 | "name": "soil_moisture", | 54 | "name": "soil_moisture", | ||
25 | "notes": "# About the data:\r\nThis dataset consists of soil | 55 | "notes": "# About the data:\r\nThis dataset consists of soil | ||
26 | moisture and temperature measurements collected from TOMST | 56 | moisture and temperature measurements collected from TOMST | ||
27 | (https://tomst.com/web/en/systems/tms/tms-4/) data loggers in several | 57 | (https://tomst.com/web/en/systems/tms/tms-4/) data loggers in several | ||
28 | locations in Africa but also in Cuba. The dataset consists of three | 58 | locations in Africa but also in Cuba. The dataset consists of three | ||
29 | near-surface temperature measurements (12 cm ground surface (Temp: +12 | 59 | near-surface temperature measurements (12 cm ground surface (Temp: +12 | ||
30 | cm), on the ground surface (Temp: 0 cm), and just below the surface | 60 | cm), on the ground surface (Temp: 0 cm), and just below the surface | ||
31 | (Temp: -6 cm). Measurements of soil moisture are collected at a depth | 61 | (Temp: -6 cm). Measurements of soil moisture are collected at a depth | ||
32 | of 15 cm below the ground using the Time Domain Transmittometry | 62 | of 15 cm below the ground using the Time Domain Transmittometry | ||
33 | technique. The TOMST loggers record soil moisture measurements as raw | 63 | technique. The TOMST loggers record soil moisture measurements as raw | ||
34 | electric signals, which have to be converted to volumetric soil | 64 | electric signals, which have to be converted to volumetric soil | ||
35 | moisture content by a calibration approach. At the moment, we have | 65 | moisture content by a calibration approach. At the moment, we have | ||
36 | used a global calibration curve (independent of soil texture) as we | 66 | used a global calibration curve (independent of soil texture) as we | ||
37 | calibrate the loggers for different textures. The dataset herein | 67 | calibrate the loggers for different textures. The dataset herein | ||
38 | includes the raw sensor readings, which can be calibrated using the | 68 | includes the raw sensor readings, which can be calibrated using the | ||
39 | TMS calibration guide | 69 | TMS calibration guide | ||
40 | m/web/wp-content/uploads/2023/05/TMS-calibration-handbook.pdf\r\n\r\n# | 70 | m/web/wp-content/uploads/2023/05/TMS-calibration-handbook.pdf\r\n\r\n# | ||
41 | Utilization:\r\nThe dataset is intended for applications in hydrology | 71 | Utilization:\r\nThe dataset is intended for applications in hydrology | ||
42 | to monitor long-term soil moisture conditions, agricultural droughts | 72 | to monitor long-term soil moisture conditions, agricultural droughts | ||
43 | (vegetation water deficit), validate soil moisture and | 73 | (vegetation water deficit), validate soil moisture and | ||
44 | evapotranspiration observations from remote sensing, and soil water | 74 | evapotranspiration observations from remote sensing, and soil water | ||
45 | balance models. In some cases, the data is also being used to assess | 75 | balance models. In some cases, the data is also being used to assess | ||
46 | the suitability of using this type of sensor for irrigation scheduling | 76 | the suitability of using this type of sensor for irrigation scheduling | ||
47 | and water conservation. We have deployed these loggers to evaluate | 77 | and water conservation. We have deployed these loggers to evaluate | ||
48 | whether the fine resolution (250m) data from FAO\u2019s Water | 78 | whether the fine resolution (250m) data from FAO\u2019s Water | ||
49 | Productivity through Open access of Remotely sensed derived data | 79 | Productivity through Open access of Remotely sensed derived data | ||
50 | (WaPOR) can be used to contribute to relevant and timely drought | 80 | (WaPOR) can be used to contribute to relevant and timely drought | ||
51 | monitoring at micro-scale, and how drought indices computed from | 81 | monitoring at micro-scale, and how drought indices computed from | ||
52 | WaPOR-data correspond to soil moisture trends at field scale.\r\n", | 82 | WaPOR-data correspond to soil moisture trends at field scale.\r\n", | ||
53 | "notes_translated": { | 83 | "notes_translated": { | ||
54 | "en": "# About the data:\r\nThis dataset consists of soil moisture | 84 | "en": "# About the data:\r\nThis dataset consists of soil moisture | ||
55 | and temperature measurements collected from TOMST | 85 | and temperature measurements collected from TOMST | ||
56 | (https://tomst.com/web/en/systems/tms/tms-4/) data loggers in several | 86 | (https://tomst.com/web/en/systems/tms/tms-4/) data loggers in several | ||
57 | locations in Africa but also in Cuba. The dataset consists of three | 87 | locations in Africa but also in Cuba. The dataset consists of three | ||
58 | near-surface temperature measurements (12 cm ground surface (Temp: +12 | 88 | near-surface temperature measurements (12 cm ground surface (Temp: +12 | ||
59 | cm), on the ground surface (Temp: 0 cm), and just below the surface | 89 | cm), on the ground surface (Temp: 0 cm), and just below the surface | ||
60 | (Temp: -6 cm). Measurements of soil moisture are collected at a depth | 90 | (Temp: -6 cm). Measurements of soil moisture are collected at a depth | ||
61 | of 15 cm below the ground using the Time Domain Transmittometry | 91 | of 15 cm below the ground using the Time Domain Transmittometry | ||
62 | technique. The TOMST loggers record soil moisture measurements as raw | 92 | technique. The TOMST loggers record soil moisture measurements as raw | ||
63 | electric signals, which have to be converted to volumetric soil | 93 | electric signals, which have to be converted to volumetric soil | ||
64 | moisture content by a calibration approach. At the moment, we have | 94 | moisture content by a calibration approach. At the moment, we have | ||
65 | used a global calibration curve (independent of soil texture) as we | 95 | used a global calibration curve (independent of soil texture) as we | ||
66 | calibrate the loggers for different textures. The dataset herein | 96 | calibrate the loggers for different textures. The dataset herein | ||
67 | includes the raw sensor readings, which can be calibrated using the | 97 | includes the raw sensor readings, which can be calibrated using the | ||
68 | TMS calibration guide | 98 | TMS calibration guide | ||
69 | m/web/wp-content/uploads/2023/05/TMS-calibration-handbook.pdf\r\n\r\n# | 99 | m/web/wp-content/uploads/2023/05/TMS-calibration-handbook.pdf\r\n\r\n# | ||
70 | Utilization:\r\nThe dataset is intended for applications in hydrology | 100 | Utilization:\r\nThe dataset is intended for applications in hydrology | ||
71 | to monitor long-term soil moisture conditions, agricultural droughts | 101 | to monitor long-term soil moisture conditions, agricultural droughts | ||
72 | (vegetation water deficit), validate soil moisture and | 102 | (vegetation water deficit), validate soil moisture and | ||
73 | evapotranspiration observations from remote sensing, and soil water | 103 | evapotranspiration observations from remote sensing, and soil water | ||
74 | balance models. In some cases, the data is also being used to assess | 104 | balance models. In some cases, the data is also being used to assess | ||
75 | the suitability of using this type of sensor for irrigation scheduling | 105 | the suitability of using this type of sensor for irrigation scheduling | ||
76 | and water conservation. We have deployed these loggers to evaluate | 106 | and water conservation. We have deployed these loggers to evaluate | ||
77 | whether the fine resolution (250m) data from FAO\u2019s Water | 107 | whether the fine resolution (250m) data from FAO\u2019s Water | ||
78 | Productivity through Open access of Remotely sensed derived data | 108 | Productivity through Open access of Remotely sensed derived data | ||
79 | (WaPOR) can be used to contribute to relevant and timely drought | 109 | (WaPOR) can be used to contribute to relevant and timely drought | ||
80 | monitoring at micro-scale, and how drought indices computed from | 110 | monitoring at micro-scale, and how drought indices computed from | ||
81 | WaPOR-data correspond to soil moisture trends at field scale.\r\n", | 111 | WaPOR-data correspond to soil moisture trends at field scale.\r\n", | ||
82 | "es": "Acerca del conjunto de datos:\r\nEste conjunto de datos | 112 | "es": "Acerca del conjunto de datos:\r\nEste conjunto de datos | ||
83 | consiste en mediciones de humedad del suelo y temperatura recolectadas | 113 | consiste en mediciones de humedad del suelo y temperatura recolectadas | ||
84 | de los registradores de datos TOMST | 114 | de los registradores de datos TOMST | ||
85 | (https://tomst.com/web/en/systems/tms/tms-4/) en varias ubicaciones en | 115 | (https://tomst.com/web/en/systems/tms/tms-4/) en varias ubicaciones en | ||
86 | \u00c1frica y tambi\u00e9n en Cuba. El conjunto de datos incluye tres | 116 | \u00c1frica y tambi\u00e9n en Cuba. El conjunto de datos incluye tres | ||
87 | mediciones de temperatura cerca de la superficie (a 12 cm sobre la | 117 | mediciones de temperatura cerca de la superficie (a 12 cm sobre la | ||
88 | superficie del suelo (Temp: +12 cm), en la superficie del suelo (Temp: | 118 | superficie del suelo (Temp: +12 cm), en la superficie del suelo (Temp: | ||
89 | 0 cm) y justo debajo de la superficie (Temp: -6 cm)). Las mediciones | 119 | 0 cm) y justo debajo de la superficie (Temp: -6 cm)). Las mediciones | ||
90 | de humedad del suelo se recopilan a una profundidad de 15 cm debajo | 120 | de humedad del suelo se recopilan a una profundidad de 15 cm debajo | ||
91 | del suelo utilizando la t\u00e9cnica de Transmisi\u00f3n de Dominio | 121 | del suelo utilizando la t\u00e9cnica de Transmisi\u00f3n de Dominio | ||
92 | Temporal. Los registradores TOMST registran las mediciones de humedad | 122 | Temporal. Los registradores TOMST registran las mediciones de humedad | ||
93 | del suelo como se\u00f1ales el\u00e9ctricas en bruto, que deben | 123 | del suelo como se\u00f1ales el\u00e9ctricas en bruto, que deben | ||
94 | convertirse en contenido de humedad del suelo volum\u00e9trico | 124 | convertirse en contenido de humedad del suelo volum\u00e9trico | ||
95 | mediante un enfoque de calibraci\u00f3n. Actualmente, hemos utilizado | 125 | mediante un enfoque de calibraci\u00f3n. Actualmente, hemos utilizado | ||
96 | una curva de calibraci\u00f3n global (independiente de la textura del | 126 | una curva de calibraci\u00f3n global (independiente de la textura del | ||
97 | suelo) mientras calibramos los registradores para diferentes texturas. | 127 | suelo) mientras calibramos los registradores para diferentes texturas. | ||
98 | El conjunto de datos aqu\u00ed incluido contiene las lecturas sin | 128 | El conjunto de datos aqu\u00ed incluido contiene las lecturas sin | ||
99 | procesar de los sensores, que pueden calibrarse utilizando la | 129 | procesar de los sensores, que pueden calibrarse utilizando la | ||
100 | gu\u00eda de calibraci\u00f3n TMS | 130 | gu\u00eda de calibraci\u00f3n TMS | ||
101 | s/2023/05/TMS-calibration-handbook.pdf.\r\n\r\nUtilizaci\u00f3n:\r\nEl | 131 | s/2023/05/TMS-calibration-handbook.pdf.\r\n\r\nUtilizaci\u00f3n:\r\nEl | ||
102 | conjunto de datos est\u00e1 destinado a aplicaciones en | 132 | conjunto de datos est\u00e1 destinado a aplicaciones en | ||
103 | hidrolog\u00eda para monitorear condiciones de humedad del suelo a | 133 | hidrolog\u00eda para monitorear condiciones de humedad del suelo a | ||
104 | largo plazo, sequ\u00edas agr\u00edcolas (d\u00e9ficit de agua en la | 134 | largo plazo, sequ\u00edas agr\u00edcolas (d\u00e9ficit de agua en la | ||
105 | vegetaci\u00f3n), validar observaciones de humedad del suelo y | 135 | vegetaci\u00f3n), validar observaciones de humedad del suelo y | ||
106 | evapotranspiraci\u00f3n a partir de datos de teledetecci\u00f3n, y | 136 | evapotranspiraci\u00f3n a partir de datos de teledetecci\u00f3n, y | ||
107 | modelos de balance h\u00eddrico del suelo. En algunos casos, los datos | 137 | modelos de balance h\u00eddrico del suelo. En algunos casos, los datos | ||
108 | tambi\u00e9n se utilizan para evaluar la idoneidad de utilizar este | 138 | tambi\u00e9n se utilizan para evaluar la idoneidad de utilizar este | ||
109 | tipo de sensor para la programaci\u00f3n del riego y la | 139 | tipo de sensor para la programaci\u00f3n del riego y la | ||
110 | conservaci\u00f3n del agua. Hemos desplegado estos registradores para | 140 | conservaci\u00f3n del agua. Hemos desplegado estos registradores para | ||
111 | evaluar si los datos de alta resoluci\u00f3n (250m) de Productividad | 141 | evaluar si los datos de alta resoluci\u00f3n (250m) de Productividad | ||
112 | del Agua a trav\u00e9s del acceso abierto de datos derivados de | 142 | del Agua a trav\u00e9s del acceso abierto de datos derivados de | ||
113 | teledetecci\u00f3n de la FAO (WaPOR) pueden contribuir al monitoreo | 143 | teledetecci\u00f3n de la FAO (WaPOR) pueden contribuir al monitoreo | ||
114 | relevante y oportuno de sequ\u00edas a microescala, y c\u00f3mo los | 144 | relevante y oportuno de sequ\u00edas a microescala, y c\u00f3mo los | ||
115 | \u00edndices de sequ\u00eda calculados a partir de datos de WaPOR | 145 | \u00edndices de sequ\u00eda calculados a partir de datos de WaPOR | ||
116 | corresponden a las tendencias de humedad del suelo a nivel de | 146 | corresponden a las tendencias de humedad del suelo a nivel de | ||
117 | campo.\r\n\r\nDescripci\u00f3n de campos de datos:\r\nEl conjunto de | 147 | campo.\r\n\r\nDescripci\u00f3n de campos de datos:\r\nEl conjunto de | ||
118 | datos se proporciona como una serie temporal que contiene los | 148 | datos se proporciona como una serie temporal que contiene los | ||
119 | siguientes campos de datos:\r\n\r\nTemp: -6 cm\r\nTemperatura del | 149 | siguientes campos de datos:\r\n\r\nTemp: -6 cm\r\nTemperatura del | ||
120 | suelo medida por el registrador a 6 cm debajo de la superficie del | 150 | suelo medida por el registrador a 6 cm debajo de la superficie del | ||
121 | suelo.\r\n\r\nTemp: 0 cm\r\nTemperatura del aire/suelo medida por el | 151 | suelo.\r\n\r\nTemp: 0 cm\r\nTemperatura del aire/suelo medida por el | ||
122 | registrador en la superficie del suelo.\r\n\r\nTemp: +12 | 152 | registrador en la superficie del suelo.\r\n\r\nTemp: +12 | ||
123 | cm\r\nTemperatura del aire medida por el registrador a 12 cm sobre la | 153 | cm\r\nTemperatura del aire medida por el registrador a 12 cm sobre la | ||
124 | superficie del suelo.\r\n\r\nRaw sensor reading\r\nEsta es la | 154 | superficie del suelo.\r\n\r\nRaw sensor reading\r\nEsta es la | ||
125 | se\u00f1al el\u00e9ctrica de humedad del suelo medida por el sensor | 155 | se\u00f1al el\u00e9ctrica de humedad del suelo medida por el sensor | ||
126 | que debe convertirse en un valor de contenido de humedad del suelo | 156 | que debe convertirse en un valor de contenido de humedad del suelo | ||
127 | volum\u00e9trico.\r\n\r\nCalibrated vmc\r\nEste es el contenido | 157 | volum\u00e9trico.\r\n\r\nCalibrated vmc\r\nEste es el contenido | ||
128 | volum\u00e9trico de humedad obtenido al calibrar la lectura en bruto | 158 | volum\u00e9trico de humedad obtenido al calibrar la lectura en bruto | ||
129 | del sensor. Los valores se obtienen utilizando la ecuaci\u00f3n de | 159 | del sensor. Los valores se obtienen utilizando la ecuaci\u00f3n de | ||
130 | Kopecky et al., (2021) | 160 | Kopecky et al., (2021) | ||
131 | ttps://doi.org/10.1016/j.scitotenv.2020.143785.\r\n\r\nLogger_id\r\nEl | 161 | ttps://doi.org/10.1016/j.scitotenv.2020.143785.\r\n\r\nLogger_id\r\nEl | ||
132 | n\u00famero de serie del registrador de datos.\r\n\r\nLatitude, | 162 | n\u00famero de serie del registrador de datos.\r\n\r\nLatitude, | ||
133 | Longitude\r\nLas coordenadas donde se encuentra el sensor.\r\n\r\nDate | 163 | Longitude\r\nLas coordenadas donde se encuentra el sensor.\r\n\r\nDate | ||
134 | installed in the field:\r\nFecha en la que se instal\u00f3 el sensor | 164 | installed in the field:\r\nFecha en la que se instal\u00f3 el sensor | ||
135 | en el campo.", | 165 | en el campo.", | ||
136 | "fr": "Ce jeu de donn\u00e9es comprend des mesures d'humidit\u00e9 | 166 | "fr": "Ce jeu de donn\u00e9es comprend des mesures d'humidit\u00e9 | ||
137 | du sol et de temp\u00e9rature collect\u00e9es \u00e0 l'aide des | 167 | du sol et de temp\u00e9rature collect\u00e9es \u00e0 l'aide des | ||
138 | enregistreurs de donn\u00e9es TOMST | 168 | enregistreurs de donn\u00e9es TOMST | ||
139 | (https://tomst.com/web/en/systems/tms/tms-4/) dans plusieurs endroits | 169 | (https://tomst.com/web/en/systems/tms/tms-4/) dans plusieurs endroits | ||
140 | en Afrique ainsi qu'\u00e0 Cuba. Le jeu de donn\u00e9es contient trois | 170 | en Afrique ainsi qu'\u00e0 Cuba. Le jeu de donn\u00e9es contient trois | ||
141 | mesures de temp\u00e9rature proches de la surface : \u00e0 12 cm | 171 | mesures de temp\u00e9rature proches de la surface : \u00e0 12 cm | ||
142 | au-dessus de la surface du sol (Temp: +12 cm), \u00e0 la surface du | 172 | au-dessus de la surface du sol (Temp: +12 cm), \u00e0 la surface du | ||
143 | sol (Temp: 0 cm) et juste sous la surface (Temp: -6 cm). Les mesures | 173 | sol (Temp: 0 cm) et juste sous la surface (Temp: -6 cm). Les mesures | ||
144 | d'humidit\u00e9 du sol sont recueillies \u00e0 une profondeur de 15 cm | 174 | d'humidit\u00e9 du sol sont recueillies \u00e0 une profondeur de 15 cm | ||
145 | sous le sol en utilisant la technique de Transmittance par Domaine | 175 | sous le sol en utilisant la technique de Transmittance par Domaine | ||
146 | Temporel. Les enregistreurs TOMST enregistrent les mesures | 176 | Temporel. Les enregistreurs TOMST enregistrent les mesures | ||
147 | d'humidit\u00e9 du sol sous forme de signaux \u00e9lectriques bruts, | 177 | d'humidit\u00e9 du sol sous forme de signaux \u00e9lectriques bruts, | ||
148 | qui doivent \u00eatre convertis en contenu d'humidit\u00e9 | 178 | qui doivent \u00eatre convertis en contenu d'humidit\u00e9 | ||
149 | volum\u00e9trique du sol gr\u00e2ce \u00e0 une approche de | 179 | volum\u00e9trique du sol gr\u00e2ce \u00e0 une approche de | ||
150 | calibration. Actuellement, nous utilisons une courbe de calibration | 180 | calibration. Actuellement, nous utilisons une courbe de calibration | ||
151 | globale (ind\u00e9pendante de la texture du sol) pendant que nous | 181 | globale (ind\u00e9pendante de la texture du sol) pendant que nous | ||
152 | calibrons les enregistreurs pour diff\u00e9rentes textures. Le jeu de | 182 | calibrons les enregistreurs pour diff\u00e9rentes textures. Le jeu de | ||
153 | donn\u00e9es inclus ici contient les lectures brutes des capteurs, qui | 183 | donn\u00e9es inclus ici contient les lectures brutes des capteurs, qui | ||
154 | peuvent \u00eatre calibr\u00e9es en utilisant le guide de calibration | 184 | peuvent \u00eatre calibr\u00e9es en utilisant le guide de calibration | ||
155 | TMS | 185 | TMS | ||
156 | ntent/uploads/2023/05/TMS-calibration-handbook.pdf.\r\n\r\nUtilisation | 186 | ntent/uploads/2023/05/TMS-calibration-handbook.pdf.\r\n\r\nUtilisation | ||
157 | :\r\nCe jeu de donn\u00e9es est destin\u00e9 \u00e0 des applications | 187 | :\r\nCe jeu de donn\u00e9es est destin\u00e9 \u00e0 des applications | ||
158 | en hydrologie pour surveiller les conditions d'humidit\u00e9 du sol | 188 | en hydrologie pour surveiller les conditions d'humidit\u00e9 du sol | ||
159 | \u00e0 long terme, les s\u00e9cheresses agricoles (d\u00e9ficit en eau | 189 | \u00e0 long terme, les s\u00e9cheresses agricoles (d\u00e9ficit en eau | ||
160 | des v\u00e9g\u00e9taux), valider les observations d'humidit\u00e9 du | 190 | des v\u00e9g\u00e9taux), valider les observations d'humidit\u00e9 du | ||
161 | sol et d'\u00e9vapotranspiration issues de la | 191 | sol et d'\u00e9vapotranspiration issues de la | ||
162 | t\u00e9l\u00e9d\u00e9tection, et des mod\u00e8les de bilan hydrique du | 192 | t\u00e9l\u00e9d\u00e9tection, et des mod\u00e8les de bilan hydrique du | ||
163 | sol. Dans certains cas, les donn\u00e9es sont \u00e9galement | 193 | sol. Dans certains cas, les donn\u00e9es sont \u00e9galement | ||
164 | utilis\u00e9es pour \u00e9valuer l'ad\u00e9quation de ce type de | 194 | utilis\u00e9es pour \u00e9valuer l'ad\u00e9quation de ce type de | ||
165 | capteur pour la planification de l'irrigation et la conservation de | 195 | capteur pour la planification de l'irrigation et la conservation de | ||
166 | l'eau. Nous avons d\u00e9ploy\u00e9 ces enregistreurs pour | 196 | l'eau. Nous avons d\u00e9ploy\u00e9 ces enregistreurs pour | ||
167 | \u00e9valuer si les donn\u00e9es de haute r\u00e9solution (250 m) de | 197 | \u00e9valuer si les donn\u00e9es de haute r\u00e9solution (250 m) de | ||
168 | la Productivit\u00e9 de l'Eau via l'acc\u00e8s ouvert de donn\u00e9es | 198 | la Productivit\u00e9 de l'Eau via l'acc\u00e8s ouvert de donn\u00e9es | ||
169 | d\u00e9riv\u00e9es de t\u00e9l\u00e9d\u00e9tection de la FAO (WaPOR) | 199 | d\u00e9riv\u00e9es de t\u00e9l\u00e9d\u00e9tection de la FAO (WaPOR) | ||
170 | peuvent contribuer \u00e0 un suivi pertinent et opportun des | 200 | peuvent contribuer \u00e0 un suivi pertinent et opportun des | ||
171 | s\u00e9cheresses \u00e0 micro-\u00e9chelle, et comment les indices de | 201 | s\u00e9cheresses \u00e0 micro-\u00e9chelle, et comment les indices de | ||
172 | s\u00e9cheresse calcul\u00e9s \u00e0 partir des donn\u00e9es de WaPOR | 202 | s\u00e9cheresse calcul\u00e9s \u00e0 partir des donn\u00e9es de WaPOR | ||
173 | correspondent aux tendances de l'humidit\u00e9 du sol \u00e0 | 203 | correspondent aux tendances de l'humidit\u00e9 du sol \u00e0 | ||
174 | l'\u00e9chelle des champs.\r\n\r\nDescription des champs de | 204 | l'\u00e9chelle des champs.\r\n\r\nDescription des champs de | ||
175 | donn\u00e9es :\r\nLe jeu de donn\u00e9es est fourni sous forme de | 205 | donn\u00e9es :\r\nLe jeu de donn\u00e9es est fourni sous forme de | ||
176 | s\u00e9rie temporelle contenant les champs de donn\u00e9es suivants | 206 | s\u00e9rie temporelle contenant les champs de donn\u00e9es suivants | ||
177 | :\r\n\r\nTemp: -6 cm\r\nTemp\u00e9rature du sol mesur\u00e9e par | 207 | :\r\n\r\nTemp: -6 cm\r\nTemp\u00e9rature du sol mesur\u00e9e par | ||
178 | l'enregistreur \u00e0 6 cm sous la surface du sol.\r\n\r\nTemp: 0 | 208 | l'enregistreur \u00e0 6 cm sous la surface du sol.\r\n\r\nTemp: 0 | ||
179 | cm\r\nTemp\u00e9rature de l'air/sol mesur\u00e9e par l'enregistreur | 209 | cm\r\nTemp\u00e9rature de l'air/sol mesur\u00e9e par l'enregistreur | ||
180 | \u00e0 la surface du sol.\r\n\r\nTemp: +12 cm\r\nTemp\u00e9rature de | 210 | \u00e0 la surface du sol.\r\n\r\nTemp: +12 cm\r\nTemp\u00e9rature de | ||
181 | l'air mesur\u00e9e par l'enregistreur \u00e0 12 cm au-dessus de la | 211 | l'air mesur\u00e9e par l'enregistreur \u00e0 12 cm au-dessus de la | ||
182 | surface du sol.\r\n\r\nRaw sensor reading\r\nCeci est le signal | 212 | surface du sol.\r\n\r\nRaw sensor reading\r\nCeci est le signal | ||
183 | \u00e9lectrique de l'humidit\u00e9 du sol mesur\u00e9 par le capteur, | 213 | \u00e9lectrique de l'humidit\u00e9 du sol mesur\u00e9 par le capteur, | ||
184 | qui doit \u00eatre converti en une valeur de contenu volum\u00e9trique | 214 | qui doit \u00eatre converti en une valeur de contenu volum\u00e9trique | ||
185 | d'humidit\u00e9 du sol.\r\n\r\nCalibrated vmc\r\nIl s'agit du contenu | 215 | d'humidit\u00e9 du sol.\r\n\r\nCalibrated vmc\r\nIl s'agit du contenu | ||
186 | volum\u00e9trique d'humidit\u00e9 obtenu en calibrant la lecture brute | 216 | volum\u00e9trique d'humidit\u00e9 obtenu en calibrant la lecture brute | ||
187 | du capteur. Les valeurs sont obtenues en utilisant l'\u00e9quation de | 217 | du capteur. Les valeurs sont obtenues en utilisant l'\u00e9quation de | ||
188 | Kopecky et al., (2021) | 218 | Kopecky et al., (2021) | ||
189 | ttps://doi.org/10.1016/j.scitotenv.2020.143785.\r\n\r\nLogger_id\r\nLe | 219 | ttps://doi.org/10.1016/j.scitotenv.2020.143785.\r\n\r\nLogger_id\r\nLe | ||
190 | num\u00e9ro de s\u00e9rie de l'enregistreur de | 220 | num\u00e9ro de s\u00e9rie de l'enregistreur de | ||
191 | donn\u00e9es.\r\n\r\nLatitude, Longitude\r\nLes coordonn\u00e9es | 221 | donn\u00e9es.\r\n\r\nLatitude, Longitude\r\nLes coordonn\u00e9es | ||
192 | o\u00f9 se trouve le capteur.\r\n\r\nDate installed in the | 222 | o\u00f9 se trouve le capteur.\r\n\r\nDate installed in the | ||
193 | field:\r\nLa date \u00e0 laquelle le capteur a \u00e9t\u00e9 | 223 | field:\r\nLa date \u00e0 laquelle le capteur a \u00e9t\u00e9 | ||
194 | install\u00e9 dans le champ.\r\n\r\n\r\n\r\n\r\n\r\n\r\nCe jeu de | 224 | install\u00e9 dans le champ.\r\n\r\n\r\n\r\n\r\n\r\n\r\nCe jeu de | ||
195 | donn\u00e9es comprend des mesures d'humidit\u00e9 du sol et de | 225 | donn\u00e9es comprend des mesures d'humidit\u00e9 du sol et de | ||
196 | temp\u00e9rature collect\u00e9es \u00e0 l'aide des enregistreurs de | 226 | temp\u00e9rature collect\u00e9es \u00e0 l'aide des enregistreurs de | ||
197 | donn\u00e9es TOMST (https://tomst.com/web/en/systems/tms/tms-4/) dans | 227 | donn\u00e9es TOMST (https://tomst.com/web/en/systems/tms/tms-4/) dans | ||
198 | plusieurs endroits en Afrique ainsi qu'\u00e0 Cuba. Le jeu de | 228 | plusieurs endroits en Afrique ainsi qu'\u00e0 Cuba. Le jeu de | ||
199 | donn\u00e9es contient trois mesures de temp\u00e9rature proches de la | 229 | donn\u00e9es contient trois mesures de temp\u00e9rature proches de la | ||
200 | surface : \u00e0 12 cm au-dessus de la surface du sol (Temp: +12 cm), | 230 | surface : \u00e0 12 cm au-dessus de la surface du sol (Temp: +12 cm), | ||
201 | \u00e0 la surface du sol (Temp: 0 cm) et juste sous la surface (Temp: | 231 | \u00e0 la surface du sol (Temp: 0 cm) et juste sous la surface (Temp: | ||
202 | -6 cm). Les mesures d'humidit\u00e9 du sol sont recueillies \u00e0 une | 232 | -6 cm). Les mesures d'humidit\u00e9 du sol sont recueillies \u00e0 une | ||
203 | profondeur de 15 cm sous le sol en utilisant la technique de | 233 | profondeur de 15 cm sous le sol en utilisant la technique de | ||
204 | Transmittance par Domaine Temporel. Les enregistreurs TOMST | 234 | Transmittance par Domaine Temporel. Les enregistreurs TOMST | ||
205 | enregistrent les mesures d'humidit\u00e9 du sol sous forme de signaux | 235 | enregistrent les mesures d'humidit\u00e9 du sol sous forme de signaux | ||
206 | \u00e9lectriques bruts, qui doivent \u00eatre convertis en contenu | 236 | \u00e9lectriques bruts, qui doivent \u00eatre convertis en contenu | ||
207 | d'humidit\u00e9 volum\u00e9trique du sol gr\u00e2ce \u00e0 une | 237 | d'humidit\u00e9 volum\u00e9trique du sol gr\u00e2ce \u00e0 une | ||
208 | approche de calibration. Actuellement, nous utilisons une courbe de | 238 | approche de calibration. Actuellement, nous utilisons une courbe de | ||
209 | calibration globale (ind\u00e9pendante de la texture du sol) pendant | 239 | calibration globale (ind\u00e9pendante de la texture du sol) pendant | ||
210 | que nous calibrons les enregistreurs pour diff\u00e9rentes textures. | 240 | que nous calibrons les enregistreurs pour diff\u00e9rentes textures. | ||
211 | Le jeu de donn\u00e9es inclus ici contient les lectures brutes des | 241 | Le jeu de donn\u00e9es inclus ici contient les lectures brutes des | ||
212 | capteurs, qui peuvent \u00eatre calibr\u00e9es en utilisant le guide | 242 | capteurs, qui peuvent \u00eatre calibr\u00e9es en utilisant le guide | ||
213 | de calibration TMS | 243 | de calibration TMS | ||
214 | ntent/uploads/2023/05/TMS-calibration-handbook.pdf.\r\n\r\nUtilisation | 244 | ntent/uploads/2023/05/TMS-calibration-handbook.pdf.\r\n\r\nUtilisation | ||
215 | :\r\nCe jeu de donn\u00e9es est destin\u00e9 \u00e0 des applications | 245 | :\r\nCe jeu de donn\u00e9es est destin\u00e9 \u00e0 des applications | ||
216 | en hydrologie pour surveiller les conditions d'humidit\u00e9 du sol | 246 | en hydrologie pour surveiller les conditions d'humidit\u00e9 du sol | ||
217 | \u00e0 long terme, les s\u00e9cheresses agricoles (d\u00e9ficit en eau | 247 | \u00e0 long terme, les s\u00e9cheresses agricoles (d\u00e9ficit en eau | ||
218 | des v\u00e9g\u00e9taux), valider les observations d'humidit\u00e9 du | 248 | des v\u00e9g\u00e9taux), valider les observations d'humidit\u00e9 du | ||
219 | sol et d'\u00e9vapotranspiration issues de la | 249 | sol et d'\u00e9vapotranspiration issues de la | ||
220 | t\u00e9l\u00e9d\u00e9tection, et des mod\u00e8les de bilan hydrique du | 250 | t\u00e9l\u00e9d\u00e9tection, et des mod\u00e8les de bilan hydrique du | ||
221 | sol. Dans certains cas, les donn\u00e9es sont \u00e9galement | 251 | sol. Dans certains cas, les donn\u00e9es sont \u00e9galement | ||
222 | utilis\u00e9es pour \u00e9valuer l'ad\u00e9quation de ce type de | 252 | utilis\u00e9es pour \u00e9valuer l'ad\u00e9quation de ce type de | ||
223 | capteur pour la planification de l'irrigation et la conservation de | 253 | capteur pour la planification de l'irrigation et la conservation de | ||
224 | l'eau. Nous avons d\u00e9ploy\u00e9 ces enregistreurs pour | 254 | l'eau. Nous avons d\u00e9ploy\u00e9 ces enregistreurs pour | ||
225 | \u00e9valuer si les donn\u00e9es de haute r\u00e9solution (250 m) de | 255 | \u00e9valuer si les donn\u00e9es de haute r\u00e9solution (250 m) de | ||
226 | la Productivit\u00e9 de l'Eau via l'acc\u00e8s ouvert de donn\u00e9es | 256 | la Productivit\u00e9 de l'Eau via l'acc\u00e8s ouvert de donn\u00e9es | ||
227 | d\u00e9riv\u00e9es de t\u00e9l\u00e9d\u00e9tection de la FAO (WaPOR) | 257 | d\u00e9riv\u00e9es de t\u00e9l\u00e9d\u00e9tection de la FAO (WaPOR) | ||
228 | peuvent contribuer \u00e0 un suivi pertinent et opportun des | 258 | peuvent contribuer \u00e0 un suivi pertinent et opportun des | ||
229 | s\u00e9cheresses \u00e0 micro-\u00e9chelle, et comment les indices de | 259 | s\u00e9cheresses \u00e0 micro-\u00e9chelle, et comment les indices de | ||
230 | s\u00e9cheresse calcul\u00e9s \u00e0 partir des donn\u00e9es de WaPOR | 260 | s\u00e9cheresse calcul\u00e9s \u00e0 partir des donn\u00e9es de WaPOR | ||
231 | correspondent aux tendances de l'humidit\u00e9 du sol \u00e0 | 261 | correspondent aux tendances de l'humidit\u00e9 du sol \u00e0 | ||
232 | l'\u00e9chelle des champs.\r\n\r\nDescription des champs de | 262 | l'\u00e9chelle des champs.\r\n\r\nDescription des champs de | ||
233 | donn\u00e9es :\r\nLe jeu de donn\u00e9es est fourni sous forme de | 263 | donn\u00e9es :\r\nLe jeu de donn\u00e9es est fourni sous forme de | ||
234 | s\u00e9rie temporelle contenant les champs de donn\u00e9es suivants | 264 | s\u00e9rie temporelle contenant les champs de donn\u00e9es suivants | ||
235 | :\r\n\r\nTemp: -6 cm\r\nTemp\u00e9rature du sol mesur\u00e9e par | 265 | :\r\n\r\nTemp: -6 cm\r\nTemp\u00e9rature du sol mesur\u00e9e par | ||
236 | l'enregistreur \u00e0 6 cm sous la surface du sol.\r\n\r\nTemp: 0 | 266 | l'enregistreur \u00e0 6 cm sous la surface du sol.\r\n\r\nTemp: 0 | ||
237 | cm\r\nTemp\u00e9rature de l'air/sol mesur\u00e9e par l'enregistreur | 267 | cm\r\nTemp\u00e9rature de l'air/sol mesur\u00e9e par l'enregistreur | ||
238 | \u00e0 la surface du sol.\r\n\r\nTemp: +12 cm\r\nTemp\u00e9rature de | 268 | \u00e0 la surface du sol.\r\n\r\nTemp: +12 cm\r\nTemp\u00e9rature de | ||
239 | l'air mesur\u00e9e par l'enregistreur \u00e0 12 cm au-dessus de la | 269 | l'air mesur\u00e9e par l'enregistreur \u00e0 12 cm au-dessus de la | ||
240 | surface du sol.\r\n\r\nRaw sensor reading\r\nCeci est le signal | 270 | surface du sol.\r\n\r\nRaw sensor reading\r\nCeci est le signal | ||
241 | \u00e9lectrique de l'humidit\u00e9 du sol mesur\u00e9 par le capteur, | 271 | \u00e9lectrique de l'humidit\u00e9 du sol mesur\u00e9 par le capteur, | ||
242 | qui doit \u00eatre converti en une valeur de contenu volum\u00e9trique | 272 | qui doit \u00eatre converti en une valeur de contenu volum\u00e9trique | ||
243 | d'humidit\u00e9 du sol.\r\n\r\nCalibrated vmc\r\nIl s'agit du contenu | 273 | d'humidit\u00e9 du sol.\r\n\r\nCalibrated vmc\r\nIl s'agit du contenu | ||
244 | volum\u00e9trique d'humidit\u00e9 obtenu en calibrant la lecture brute | 274 | volum\u00e9trique d'humidit\u00e9 obtenu en calibrant la lecture brute | ||
245 | du capteur. Les valeurs sont obtenues en utilisant l'\u00e9quation de | 275 | du capteur. Les valeurs sont obtenues en utilisant l'\u00e9quation de | ||
246 | Kopecky et al., (2021) | 276 | Kopecky et al., (2021) | ||
247 | ttps://doi.org/10.1016/j.scitotenv.2020.143785.\r\n\r\nLogger_id\r\nLe | 277 | ttps://doi.org/10.1016/j.scitotenv.2020.143785.\r\n\r\nLogger_id\r\nLe | ||
248 | num\u00e9ro de s\u00e9rie de l'enregistreur de | 278 | num\u00e9ro de s\u00e9rie de l'enregistreur de | ||
249 | donn\u00e9es.\r\n\r\nLatitude, Longitude\r\nLes coordonn\u00e9es | 279 | donn\u00e9es.\r\n\r\nLatitude, Longitude\r\nLes coordonn\u00e9es | ||
250 | o\u00f9 se trouve le capteur.\r\n\r\nDate installed in the | 280 | o\u00f9 se trouve le capteur.\r\n\r\nDate installed in the | ||
251 | field:\r\nLa date \u00e0 laquelle le capteur a \u00e9t\u00e9 | 281 | field:\r\nLa date \u00e0 laquelle le capteur a \u00e9t\u00e9 | ||
252 | install\u00e9 dans le champ." | 282 | install\u00e9 dans le champ." | ||
253 | }, | 283 | }, | ||
254 | "num_resources": 1, | 284 | "num_resources": 1, | ||
255 | "num_tags": 5, | 285 | "num_tags": 5, | ||
256 | "organization": { | 286 | "organization": { | ||
257 | "approval_status": "approved", | 287 | "approval_status": "approved", | ||
258 | "created": "2024-10-21T12:17:09.175761", | 288 | "created": "2024-10-21T12:17:09.175761", | ||
259 | "description": "The chair is coordinated by the Vrije Universiteit | 289 | "description": "The chair is coordinated by the Vrije Universiteit | ||
260 | Brussel (VUB)", | 290 | Brussel (VUB)", | ||
261 | "id": "247648d1-1e43-44a3-b34d-c755d61b20c4", | 291 | "id": "247648d1-1e43-44a3-b34d-c755d61b20c4", | ||
n | 262 | "image_url": "", | n | 292 | "image_url": |
293 | dows.net/data/static%2Fgroup%2F2025-04-24-105223.413099-Picture1.png", | ||||
263 | "is_organization": true, | 294 | "is_organization": true, | ||
264 | "name": "unesco-chair-on-open-water-science-and-education", | 295 | "name": "unesco-chair-on-open-water-science-and-education", | ||
265 | "state": "active", | 296 | "state": "active", | ||
266 | "title": "UNESCO Chair on Open Water Science and Education", | 297 | "title": "UNESCO Chair on Open Water Science and Education", | ||
267 | "type": "organization" | 298 | "type": "organization" | ||
268 | }, | 299 | }, | ||
269 | "owner_org": "247648d1-1e43-44a3-b34d-c755d61b20c4", | 300 | "owner_org": "247648d1-1e43-44a3-b34d-c755d61b20c4", | ||
270 | "private": false, | 301 | "private": false, | ||
271 | "provenance": { | 302 | "provenance": { | ||
n | 272 | "en": "" | n | 303 | "en": "", |
304 | "es": "", | ||||
305 | "fr": "" | ||||
273 | }, | 306 | }, | ||
n | n | 307 | "publisher_email": "", | ||
308 | "publisher_identifier": "", | ||||
309 | "publisher_name": "", | ||||
310 | "publisher_type": "", | ||||
311 | "publisher_uri": | ||||
312 | hp-wins.unesco.org/organization/247648d1-1e43-44a3-b34d-c755d61b20c4", | ||||
313 | "publisher_url": "", | ||||
274 | "purpose": { | 314 | "purpose": { | ||
n | 275 | "en": "" | n | 315 | "en": "", |
316 | "es": "", | ||||
317 | "fr": "" | ||||
276 | }, | 318 | }, | ||
n | n | 319 | "reference": [], | ||
277 | "relationships_as_object": [], | 320 | "relationships_as_object": [], | ||
278 | "relationships_as_subject": [], | 321 | "relationships_as_subject": [], | ||
279 | "resources": [ | 322 | "resources": [ | ||
280 | { | 323 | { | ||
281 | "availability": | 324 | "availability": | ||
282 | ications.europa.eu/resource/authority/planned-availability/AVAILABLE", | 325 | ications.europa.eu/resource/authority/planned-availability/AVAILABLE", | ||
283 | "cache_last_updated": null, | 326 | "cache_last_updated": null, | ||
284 | "cache_url": null, | 327 | "cache_url": null, | ||
285 | "created": "2024-12-05T00:00:00", | 328 | "created": "2024-12-05T00:00:00", | ||
286 | "datastore_active": true, | 329 | "datastore_active": true, | ||
287 | "description": "# About the data:\r\nThis dataset consists of | 330 | "description": "# About the data:\r\nThis dataset consists of | ||
288 | soil moisture and temperature measurements collected from TOMST | 331 | soil moisture and temperature measurements collected from TOMST | ||
289 | (https://tomst.com/web/en/systems/tms/tms-4/) data loggers in several | 332 | (https://tomst.com/web/en/systems/tms/tms-4/) data loggers in several | ||
290 | locations in Africa but also in Cuba. The dataset consists of three | 333 | locations in Africa but also in Cuba. The dataset consists of three | ||
291 | near-surface temperature measurements (12 cm ground surface (Temp: +12 | 334 | near-surface temperature measurements (12 cm ground surface (Temp: +12 | ||
292 | cm), on the ground surface (Temp: 0 cm), and just below the surface | 335 | cm), on the ground surface (Temp: 0 cm), and just below the surface | ||
293 | (Temp: -6 cm). Measurements of soil moisture are collected at a depth | 336 | (Temp: -6 cm). Measurements of soil moisture are collected at a depth | ||
294 | of 15 cm below the ground using the Time Domain Transmittometry | 337 | of 15 cm below the ground using the Time Domain Transmittometry | ||
295 | technique. The TOMST loggers record soil moisture measurements as raw | 338 | technique. The TOMST loggers record soil moisture measurements as raw | ||
296 | electric signals, which have to be converted to volumetric soil | 339 | electric signals, which have to be converted to volumetric soil | ||
297 | moisture content by a calibration approach. At the moment, we have | 340 | moisture content by a calibration approach. At the moment, we have | ||
298 | used a global calibration curve (independent of soil texture) as we | 341 | used a global calibration curve (independent of soil texture) as we | ||
299 | calibrate the loggers for different textures. The dataset herein | 342 | calibrate the loggers for different textures. The dataset herein | ||
300 | includes the raw sensor readings, which can be calibrated using the | 343 | includes the raw sensor readings, which can be calibrated using the | ||
301 | TMS calibration guide | 344 | TMS calibration guide | ||
302 | omst.com/web/wp-content/uploads/2023/05/TMS-calibration-handbook.pdf", | 345 | omst.com/web/wp-content/uploads/2023/05/TMS-calibration-handbook.pdf", | ||
303 | "encoding": "", | 346 | "encoding": "", | ||
304 | "format": "CSV", | 347 | "format": "CSV", | ||
305 | "hash": "", | 348 | "hash": "", | ||
306 | "id": "767b5960-521e-4d6e-81e1-a263c9779060", | 349 | "id": "767b5960-521e-4d6e-81e1-a263c9779060", | ||
307 | "last_modified": "2024-12-05T10:04:44.176959", | 350 | "last_modified": "2024-12-05T10:04:44.176959", | ||
n | 308 | "metadata_modified": "2024-12-09T13:32:25.893561", | n | 351 | "metadata_modified": "2025-06-03T15:50:05.328911", |
309 | "mimetype": "", | 352 | "mimetype": "", | ||
310 | "mimetype_inner": null, | 353 | "mimetype_inner": null, | ||
n | 311 | "modified": "2024-12-09", | n | 354 | "modified": "2025-06-03", |
312 | "name": "Soil moisture and temperature dataset: TOMST sensors", | 355 | "name": "Soil moisture and temperature dataset: TOMST sensors", | ||
313 | "package_id": "76e1672f-73e9-4850-872e-b0739698cf85", | 356 | "package_id": "76e1672f-73e9-4850-872e-b0739698cf85", | ||
314 | "position": 0, | 357 | "position": 0, | ||
315 | "resource_type": null, | 358 | "resource_type": null, | ||
316 | "size": null, | 359 | "size": null, | ||
317 | "state": "active", | 360 | "state": "active", | ||
318 | "status": "http://purl.org/adms/status/Completed", | 361 | "status": "http://purl.org/adms/status/Completed", | ||
319 | "url": | 362 | "url": | ||
320 | 81e1-a263c9779060/download/unesco_ihp_wins_microclimate_data-1-1.csv", | 363 | 81e1-a263c9779060/download/unesco_ihp_wins_microclimate_data-1-1.csv", | ||
321 | "url_type": "upload" | 364 | "url_type": "upload" | ||
322 | } | 365 | } | ||
323 | ], | 366 | ], | ||
324 | "schemingdcat_xls_metadata_template": false, | 367 | "schemingdcat_xls_metadata_template": false, | ||
n | n | 368 | "source": "", | ||
325 | "state": "active", | 369 | "state": "active", | ||
326 | "tag_uri": [], | 370 | "tag_uri": [], | ||
327 | "tags": [ | 371 | "tags": [ | ||
328 | { | 372 | { | ||
329 | "display_name": "TOMST", | 373 | "display_name": "TOMST", | ||
330 | "id": "d66c7d5f-bf34-4309-a1a5-cd00e442716a", | 374 | "id": "d66c7d5f-bf34-4309-a1a5-cd00e442716a", | ||
331 | "name": "TOMST", | 375 | "name": "TOMST", | ||
332 | "state": "active", | 376 | "state": "active", | ||
333 | "vocabulary_id": null | 377 | "vocabulary_id": null | ||
334 | }, | 378 | }, | ||
335 | { | 379 | { | ||
336 | "display_name": "drought", | 380 | "display_name": "drought", | ||
337 | "id": "2ed6cf80-7088-4709-ab4e-a794698a591c", | 381 | "id": "2ed6cf80-7088-4709-ab4e-a794698a591c", | ||
338 | "name": "drought", | 382 | "name": "drought", | ||
339 | "state": "active", | 383 | "state": "active", | ||
340 | "vocabulary_id": null | 384 | "vocabulary_id": null | ||
341 | }, | 385 | }, | ||
342 | { | 386 | { | ||
343 | "display_name": "hydrology", | 387 | "display_name": "hydrology", | ||
344 | "id": "916c3be3-c91a-4e73-8284-9f1557185869", | 388 | "id": "916c3be3-c91a-4e73-8284-9f1557185869", | ||
345 | "name": "hydrology", | 389 | "name": "hydrology", | ||
346 | "state": "active", | 390 | "state": "active", | ||
347 | "vocabulary_id": null | 391 | "vocabulary_id": null | ||
348 | }, | 392 | }, | ||
349 | { | 393 | { | ||
350 | "display_name": "loggers", | 394 | "display_name": "loggers", | ||
351 | "id": "c5ea69ce-c48f-4346-8701-af146c897334", | 395 | "id": "c5ea69ce-c48f-4346-8701-af146c897334", | ||
352 | "name": "loggers", | 396 | "name": "loggers", | ||
353 | "state": "active", | 397 | "state": "active", | ||
354 | "vocabulary_id": null | 398 | "vocabulary_id": null | ||
355 | }, | 399 | }, | ||
356 | { | 400 | { | ||
357 | "display_name": "soil moisture", | 401 | "display_name": "soil moisture", | ||
358 | "id": "f32bbf47-d4c9-49a2-af14-68ed8dd04f18", | 402 | "id": "f32bbf47-d4c9-49a2-af14-68ed8dd04f18", | ||
359 | "name": "soil moisture", | 403 | "name": "soil moisture", | ||
360 | "state": "active", | 404 | "state": "active", | ||
361 | "vocabulary_id": null | 405 | "vocabulary_id": null | ||
362 | } | 406 | } | ||
363 | ], | 407 | ], | ||
364 | "theme_eu": [ | 408 | "theme_eu": [ | ||
365 | "http://publications.europa.eu/resource/authority/data-theme/ENVI" | 409 | "http://publications.europa.eu/resource/authority/data-theme/ENVI" | ||
366 | ], | 410 | ], | ||
n | 367 | "title": "Near Surface Soil Moisture and Temperature data", | n | 411 | "title": "Near Surface Soil Moisture and Temperature data - TOMST", |
368 | "title_translated": { | 412 | "title_translated": { | ||
n | 369 | "en": "Near Surface Soil Moisture and Temperature data", | n | 413 | "en": "Near Surface Soil Moisture and Temperature data - TOMST", |
370 | "es": "Datos de humedad y temperatura del suelo cerca de la | 414 | "es": "Datos de humedad y temperatura del suelo cerca de la | ||
371 | superficie.", | 415 | superficie.", | ||
372 | "fr": "Donn\u00e9es sur l'humidit\u00e9 et la temp\u00e9rature du | 416 | "fr": "Donn\u00e9es sur l'humidit\u00e9 et la temp\u00e9rature du | ||
373 | sol pr\u00e8s de la surface" | 417 | sol pr\u00e8s de la surface" | ||
374 | }, | 418 | }, | ||
375 | "topic": | 419 | "topic": | ||
376 | "http://inspire.ec.europa.eu/metadata-codelist/TopicCategory/biota", | 420 | "http://inspire.ec.europa.eu/metadata-codelist/TopicCategory/biota", | ||
377 | "type": "dataset", | 421 | "type": "dataset", | ||
n | n | 422 | "unesdocimage": "", | ||
423 | "unesdocurl": "", | ||||
378 | "url": null, | 424 | "url": null, | ||
n | n | 425 | "version": "", | ||
379 | "version_notes": { | 426 | "version_notes": { | ||
t | 380 | "en": "" | t | 427 | "en": "", |
428 | "es": "", | ||||
429 | "fr": "" | ||||
381 | } | 430 | } | ||
382 | } | 431 | } |